Sets

Lecture 8

Robb T. Koether

Hampden-Sydney College

Mon, Feb 15, 2016

Outline

- Sets
- Some LATEX
- Proofs Involving Sets
- 4 Arbitrary Unions and Intersections
- 5 Some More LATEX
- 6 Proofs
- Questions

Outline

- Sets
- 2 Some LATEX
- Proofs Involving Sets
- Arbitrary Unions and Intersections
- 5 Some More LATEX
- 6 Proofs
- Questions

Set Builder Notation

• Set builder notation defines a set by using the following form.

$$S = \{x \in A \mid x \text{ satisfies a specific condition}\}.$$

- Examples
 - The set of all positive real numbers.
 - The set of all even integers.
 - The set of all real solutions to the equation $x^5 + x 1 = 0$.
 - The set of all integer solutions to the equation $x^5 + x 1 = 0$.
 - The set of all primes.

Subsets

Definition (Subset)

A set A is a subset of a set B, denoted $A \subseteq B$, if every element of A is also an element of B.

Definition (Proper Subset)

A set *A* is a proper subset of a set *B*, denoted $A \subset B$, if every element of *A* is also an element of *B*, but $A \neq B$.

Subsets

• The statement $A \subseteq B$ can be expressed as a conditional:

$$x \in A \Rightarrow x \in B$$
.

• The difference between "subset" and "proper subset" is analogous to the difference between < and <.

The Empty Set

Definition (The Empty Set)

The empty set, or null set, denoted \varnothing or $\{\}$, is the set that contains no elements.

• The empty set is a subset of every set.

Set Operations

Let *U* be the universe of discourse.

Definition (Intersection)

The intersection of sets A and B is the set

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}.$$

Definition (Union)

The union of sets A and B is the set

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}.$$

Set Operations

Let *U* be the universe of discourse.

Definition (Complement)

The complement of a set A is the set

$$A^c = \{x \in U \mid x \notin A\}.$$

Definition (Set Difference)

The difference of sets A and B is the set

$$A \setminus B = \{x \in U \mid x \in A \text{ and } x \notin B\}.$$

Outline

- Sets
- Some LATEX
- Proofs Involving Sets
- 4 Arbitrary Unions and Intersections
- 5 Some More LATEX
- 6 Proofs
- Questions

Some LATEX

Math	L ATEX	Symbol
Set builder	\ {	{
Set builder	\}	}
Set builder	\mid	
Subset	\subseteq	\subseteq
Proper subset	\subset	C
Empty set (ugly)	\emptyset	Ø
Empty set (pretty)	\varnothing	Ø
Union	\cup	U
Intersection	\cap	\cap
Complement	^c	С
Set difference	\setminus	\

Some LATEX

• The code

A\setminus B\subseteq(A\cap B)^c will produce
$$A \setminus B \subseteq (A \cap B)^c.$$

Outline

- Sets
- 2 Some LATEX
- Proofs Involving Sets
- 4 Arbitrary Unions and Intersections
- 5 Some More LATEX
- 6 Proofs
- Questions

Theorem

For any sets A, B, and C, if $A \subseteq B$, then $A \cap C \subseteq B \cap C$.

• Let A, B, and C be sets.

- Let A, B, and C be sets.
- Suppose that $A \subseteq B$.

- Let A, B, and C be sets.
- Suppose that $A \subseteq B$.
- Let $x \in A \cap C$.

- Let A, B, and C be sets.
- Suppose that $A \subseteq B$.
- Let $x \in A \cap C$.
- Then $x \in A$ and $x \in C$.

- Let A, B, and C be sets.
- Suppose that $A \subseteq B$.
- Let $x \in A \cap C$.
- Then $x \in A$ and $x \in C$.
- Because $A \subseteq B$, it follows that $x \in B$.

- Let A, B, and C be sets.
- Suppose that $A \subseteq B$.
- Let $x \in A \cap C$.
- Then $x \in A$ and $x \in C$.
- Because $A \subseteq B$, it follows that $x \in B$.
- Therefore, $x \in B \cap C$.

- Let A, B, and C be sets.
- Suppose that $A \subseteq B$.
- Let $x \in A \cap C$.
- Then $x \in A$ and $x \in C$.
- Because $A \subseteq B$, it follows that $x \in B$.
- Therefore, $x \in B \cap C$.
- Thus, $A \cap C \subseteq B \cap C$.

Theorem

For any sets A, B, and C,

$$(A \setminus C) \cup (B \setminus C) \subseteq (A \cup B) \setminus C.$$

Proof.

• Let A, B, and C be sets.

- Let A, B, and C be sets.
- Let $x \in (A \setminus C) \cup (B \setminus C)$.

- Let A, B, and C be sets.
- Let $x \in (A \setminus C) \cup (B \setminus C)$.
- Then $x \in A \setminus C$ or $x \in B \setminus C$.

- Let A, B, and C be sets.
- Let $x \in (A \setminus C) \cup (B \setminus C)$.
- Then $x \in A \setminus C$ or $x \in B \setminus C$.
- Case 1: Suppose $x \in A \setminus C$.

- Let A, B, and C be sets.
- Let $x \in (A \setminus C) \cup (B \setminus C)$.
- Then $x \in A \setminus C$ or $x \in B \setminus C$.
- Case 1: Suppose $x \in A \setminus C$.
 - Then $x \in A$ and $x \notin C$.

- Let A, B, and C be sets.
- Let $x \in (A \setminus C) \cup (B \setminus C)$.
- Then $x \in A \setminus C$ or $x \in B \setminus C$.
- Case 1: Suppose $x \in A \setminus C$.
 - Then $x \in A$ and $x \notin C$.
 - Because $x \in A$, then $x \in A \cup B$.

- Let A, B, and C be sets.
- Let $x \in (A \setminus C) \cup (B \setminus C)$.
- Then $x \in A \setminus C$ or $x \in B \setminus C$.
- Case 1: Suppose $x \in A \setminus C$.
 - Then $x \in A$ and $x \notin C$.
 - Because $x \in A$, then $x \in A \cup B$.
 - Therefore, $x \in (A \cup B) \setminus C$.

Proof.

• Case 2: Suppose $x \in B \setminus C$.

- Case 2: Suppose $x \in B \setminus C$.
 - Then $x \in B$ and $x \notin C$.

- Case 2: Suppose $x \in B \setminus C$.
 - Then $x \in B$ and $x \notin C$.
 - Because $x \in B$, then $x \in A \cup B$.

- Case 2: Suppose $x \in B \setminus C$.
 - Then $x \in B$ and $x \notin C$.
 - Because $x \in B$, then $x \in A \cup B$.
 - Therefore, $x \in (A \cup B) \setminus C$.

- Case 2: Suppose $x \in B \setminus C$.
 - Then $x \in B$ and $x \notin C$.
 - Because $x \in B$, then $x \in A \cup B$.
 - Therefore, $x \in (A \cup B) \setminus C$.
- Therefore, $x \in (A \cup B) \setminus C$.

- Case 2: Suppose $x \in B \setminus C$.
 - Then $x \in B$ and $x \notin C$.
 - Because $x \in B$, then $x \in A \cup B$.
 - Therefore, $x \in (A \cup B) \setminus C$.
- Therefore, $x \in (A \cup B) \setminus C$.
- If follows that $(A \setminus C) \cup (B \setminus C) \subseteq (A \cup B) \setminus C$.

Now prove the converse.

Proofs Involving Sets

- Now prove the converse.
- That is, prove that

$$(A \cup B) \setminus C \subseteq (A \setminus C) \cup (B \setminus C).$$

Proofs Involving Sets

- Now prove the converse.
- That is, prove that

$$(A \cup B) \setminus C \subseteq (A \setminus C) \cup (B \setminus C).$$

• Why is that the "converse?"

Proofs Involving Sets

- Now prove the converse.
- That is, prove that

$$(A \cup B) \setminus C \subseteq (A \setminus C) \cup (B \setminus C).$$

- Why is that the "converse?"
- After proving the converse, it follows that

$$(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C.$$

Outline

- Sets
- 2 Some LATEX
- Proofs Involving Sets
- Arbitrary Unions and Intersections
- 5 Some More LATEX
- 6 Proofs
- Questions

Indexing Notation

- We are familiar with the indexing notation when working with sequences x_1, x_2, x_3, \ldots
- The sequence can be abbreviated as

$$\{x_i\}_{i=1}^{\infty}$$
,

or more simply as

$$\{x_i\}_{i\in\mathbb{N}}$$
.

• We represent the infinite sum $x_1 + x_2 + x_3 + \cdots$ as

$$\sum_{i=1}^{\infty} x_i \text{ or } \sum_{i \in \mathbb{N}} x_i.$$

Indexing Sets

- When working with a collection of sets, it is often convenient to do the same thing.
- For example, rather than write

$$A, B, C, \ldots,$$

we write

$$A_1, A_2, A_3, \ldots$$

This can be abbreviated as

$$\{A_i\}_{i=1}^{\infty}$$
 or $\{A_i\}_{i\in\mathbb{N}}$.

Arbitrary Unions and Intersections

- Rather than "add" sets, we take their union and their intersection.
- The union of a collection of sets

$$A_1 \cup A_2 \cup A_3 \cup \cdots$$

is denoted

$$\bigcup_{i=1}^{\infty} A_i \text{ or } \bigcup_{i\in\mathbb{N}} A_i.$$

Arbitrary Unions and Intersections

The intersection of a collection of sets

$$A_1 \cap A_2 \cap A_3 \cap \cdots$$

is denoted

$$\bigcap_{i=1}^{\infty} A_i \text{ or } \bigcap_{i\in\mathbb{N}} A_i.$$

Arbitrary Unions and Intersections

Definition (Arbitrary Union)

$$\bigcup_{i \in \mathbb{N}} A_i = \{ x \in U \mid x \in A_i \text{ for some } i \in \mathbb{N} \}$$
$$= \{ x \in U \mid (\exists i \in \mathbb{N}) (x \in A_i) \}.$$

Definition (Arbitrary Intersection)

$$\bigcap_{i \in \mathbb{N}} A_i = \{ x \in U \mid x \in A_i \text{ for every } i \in \mathbb{N} \}$$
$$= \{ x \in U \mid (\forall i \in \mathbb{N}) (x \in A_i) \}.$$

Outline

- Sets
- 2 Some LATEX
- Proofs Involving Sets
- 4 Arbitrary Unions and Intersections
- 5 Some More LATEX
- 6 Proofs
- Questions

Some More LATEX

Math	<u> E</u> X	Symbol
Sum	\sum_{i=1}^\infty A_i	$\sum_{i=1}^{\infty} A_i$
Sum	\sum_{i\in\mathbb{N}}A_i	$\sum_{i\in\mathbb{N}}A_i$
Union	\bigcup_{i\in\mathbb{N}}A_i	$\bigcup_{i\in\mathbb{N}}A_i$
Intersection	\bigcap_{i\in\mathbb{N}}A_i	$\bigcap_{i\in\mathbb{N}}A_i$

Example (Exercise 2.56)

- Let $T_n = \left\{ x \in \mathbb{R} \middle| -\frac{1}{n} < x < \frac{1}{n} \right\} = \left(-\frac{1}{n}, \frac{1}{n} \right)$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=1}^{\infty} T_n$.
 - Describe $\bigcap^{\infty} T_n$.

- Let $M_n = \{k \in \mathbb{N} | k \text{ is a multiple of } n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=0}^{\infty} M_n$.
 - n=1
 - Describe $\bigcap M_n$.

- Let $M_n = \{k \in \mathbb{N} | k \text{ is a multiple of } n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=0}^{\infty} M_n$.
 - Describe $\bigcap_{n=0}^{\infty} M_n$.
 - n=1 10
 - Describe $\bigcap_{n=1}^{\infty} M_n$.

- Let $S_n = \{k \in \mathbb{N} | n \le k \le 2n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=1}^{\infty} S_n$.
 - Describe $\bigcap_{n} S_n$.

- Let $S_n = \{k \in \mathbb{N} | n \le k \le 2n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=1}^{\infty} S_n$.
 - Describe $\bigcap_{n=1}^{\infty} S_n$.
- Prove that $\bigcup_{n=1}^{\infty} S_n = \mathbb{N}$.

- Let $S_n = \{k \in \mathbb{N} | n \le k \le 2n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=1}^{\infty} S_n$.
 - Describe $\bigcap_{n=1}^{\infty} S_n$.
- Prove that $\bigcup_{n=1}^{\infty} S_n = \mathbb{N}$.
- Prove that $\bigcap_{n=1}^{\infty} S_n = \emptyset$.

- Let $A_n = \{k \in \mathbb{N} | n^2 \le k < n^2 + 2n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=1}^{\infty} A_n$.
 - Describe $\bigcap_{n=1}^{\infty} A_n$.

- Let $A_n = \{k \in \mathbb{N} | n^2 \le k < n^2 + 2n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=1}^{\infty} A_n$.
 - Describe $\bigcap_{n=1}^{\infty} A_n$.
- Prove that $\bigcup_{n=1}^{\infty} A_n = \mathbb{N}$.

- Let $A_n = \{k \in \mathbb{N} | n^2 \le k < n^2 + 2n\}$, where $n \in \mathbb{N}$.
 - Describe $\bigcup_{n=1}^{\infty} A_n$.
 - Describe $\bigcap_{n=1}^{\infty} A_n$.
- Prove that $\bigcup_{n=1}^{\infty} A_n = \mathbb{N}$.
- Prove that $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Outline

- Sets
- 2 Some LATEX
- Proofs Involving Sets
- 4 Arbitrary Unions and Intersections
- 5 Some More LATEX
- Proofs
- Questions

Theorem

Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set. Then

$$\bigcup_{i\in\mathbb{N}}\left(A_{i}\setminus B\right)=\left(\bigcup_{i\in\mathbb{N}}A_{i}\right)\setminus B$$

and

$$\bigcap_{i\in\mathbb{N}}\left(A_{i}\setminus B\right)=\left(\bigcap_{i\in\mathbb{N}}A_{i}\right)\setminus B$$

Proof.

• Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set.

- Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set.
- Let $x \in \bigcup_{i \in \mathbb{N}} (A_i \setminus B)$.

- Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set.
- Let $x \in \bigcup_{i \in \mathbb{N}} (A_i \setminus B)$.
- Then $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.

- Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set.
- Let $x \in \bigcup_{i \in \mathbb{N}} (A_i \setminus B)$.
- Then $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.
- So $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.

- Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set.
- Let $x \in \bigcup_{i \in \mathbb{N}} (A_i \setminus B)$.
- Then $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.
- So $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.
- That is, $x \in \bigcap_{i \in \mathbb{N}} A_i$ and $x \notin B$.

- Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set.
- Let $x \in \bigcup_{i \in \mathbb{N}} (A_i \setminus B)$.
- Then $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.
- So $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.
- That is, $x \in \bigcap_{i \in \mathbb{N}} A_i$ and $x \notin B$.
- Therefore, $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.

- Let $\{A_i\}_{i\in\mathbb{N}}$ be a collection of sets and let B be a set.
- Let $x \in \bigcup_{i \in \mathbb{N}} (A_i \setminus B)$.
- Then $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.
- So $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.
- That is, $x \in \bigcap_{i \in \mathbb{N}} A_i$ and $x \notin B$.
- Therefore, $x \in \left(\bigcup_{i \in \mathbb{N}} A_i\right) \setminus B$.
- It follows that $\bigcup_{i\in\mathbb{N}} (A_i \setminus B) \subseteq (\bigcup_{i\in\mathbb{N}} A_i) \setminus B$.

Proof.

• Now suppose that $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.

- Now suppose that $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- Then $x \in \bigcup_{i \in \mathbb{N}} A_i$ and $x \notin B$.

- Now suppose that $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- Then $x \in \bigcup_{i \in \mathbb{N}} A_i$ and $x \notin B$.
- That is, $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.

- Now suppose that $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- Then $x \in \bigcup_{i \in \mathbb{N}} A_i$ and $x \notin B$.
- That is, $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.
- So $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.

- Now suppose that $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- Then $x \in \bigcup_{i \in \mathbb{N}} A_i$ and $x \notin B$.
- That is, $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.
- So $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.
- Therefore, $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.

- Now suppose that $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- Then $x \in \bigcup_{i \in \mathbb{N}} A_i$ and $x \notin B$.
- That is, $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.
- So $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.
- Therefore, $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- It follows that $(\bigcup_{i\in\mathbb{N}} A_i) \setminus B \subseteq \bigcup_{i\in\mathbb{N}} (A_i \setminus B)$.

- Now suppose that $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- Then $x \in \bigcup_{i \in \mathbb{N}} A_i$ and $x \notin B$.
- That is, $x \in A_i$ for all $i \in \mathbb{N}$ and $x \notin B$.
- So $x \in A_i \setminus B$ for all $i \in \mathbb{N}$.
- Therefore, $x \in (\bigcup_{i \in \mathbb{N}} A_i) \setminus B$.
- It follows that $(\bigcup_{i\in\mathbb{N}} A_i) \setminus B \subseteq \bigcup_{i\in\mathbb{N}} (A_i \setminus B)$.
- Thus, $\bigcup_{i\in\mathbb{N}} (A_i \setminus B) = (\bigcup_{i\in\mathbb{N}} A_i) \setminus B$.

Outline

- Sets
- 2 Some LATEX
- Proofs Involving Sets
- 4 Arbitrary Unions and Intersections
- 5 Some More LATEX
- 6 Proofs
- Questions

• If $A_{i+1} \subseteq A_i$ for all $i \in \mathbb{N}$, what is $\bigcup_{i \in \mathbb{N}} A_i$?

- If $A_{i+1} \subseteq A_i$ for all $i \in \mathbb{N}$, what is $\bigcup_{i \in \mathbb{N}} A_i$?
- If $A_i \subseteq A_{i+1}$ for all $i \in \mathbb{N}$, what is $\bigcap_{i \in \mathbb{N}} A_i$?

- If $A_{i+1} \subseteq A_i$ for all $i \in \mathbb{N}$, what is $\bigcup_{i \in \mathbb{N}} A_i$?
- If $A_i \subseteq A_{i+1}$ for all $i \in \mathbb{N}$, what is $\bigcap_{i \in \mathbb{N}} A_i$?
- If $A_i \subseteq A_{i+1}$ for all $i \in \mathbb{N}$, what is $\bigcup_{i \in \mathbb{N}} A_i$?

- If $A_{i+1} \subseteq A_i$ for all $i \in \mathbb{N}$, what is $\bigcup_{i \in \mathbb{N}} A_i$?
- If $A_i \subseteq A_{i+1}$ for all $i \in \mathbb{N}$, what is $\bigcap_{i \in \mathbb{N}} A_i$?
- If $A_i \subseteq A_{i+1}$ for all $i \in \mathbb{N}$, what is $\bigcup_{i \in \mathbb{N}} A_i$?
- If $A_{i+1} \subseteq A_i$ for all $i \in \mathbb{N}$, what is $\bigcap_{i \in \mathbb{N}} A_i$?

$(\bigcup_{i\in\mathbb{N}}A_i)\setminus (\bigcup_{j\in\mathbb{N}}B_j)$	$\bigcup_{i\in\mathbb{N}}\left(\bigcup_{j\in\mathbb{N}}(A_i\setminus B_j) ight)$
$\left(\bigcup_{i\in\mathbb{N}}A_i\right)\setminus\left(\bigcap_{j\in\mathbb{N}}B_j\right)$	$\bigcup_{i\in\mathbb{N}}\left(\bigcap_{j\in\mathbb{N}}(A_i\setminus B_j)\right)$
$\bigcap_{i\in\mathbb{N}}A_i\setminus \left(\bigcup_{j\in\mathbb{N}}B_j\right)$	$\bigcap_{i\in\mathbb{N}}\left(\bigcup_{j\in\mathbb{N}}(A_i\setminus B_j)\right)$
$\bigcap_{i\in\mathbb{N}}A_i\setminus \left(\bigcap_{j\in\mathbb{N}}B_j\right)$	$\bigcap_{i\in\mathbb{N}}\left(\bigcap_{j\in\mathbb{N}}(A_i\setminus B_j)\right)$

Which sets are equal?